

Facing together new challenges: the worldwide on going R&D work for the future nuclear energy systems

Dr. Jacques BOUCHARD
Director
Nuclear Energy Division

Atoms for Peace 3rd Workshop July 22, 2003

Background

"How can nuclear energy be used in a positive manner for the international community without being banned for military applications?"

- Speech of President Eisenhower, 8 Dec. 1953 :
 - Legitimacy of promoting cooperation in the peaceful uses of nuclear energy,
 - Necessity of inspections conducted by an international agency.

 Then, implementation of the Treaty on the Non-Proliferation of nuclear weapons

Has this system be efficient so far?

Nuclear energy has been developped in a peaceful manner throughout the world and is used for approximatively 15% of all electricity produced.

But:

- Several states have still not signed the NPT,
- Other states must clarify their intentions,
- → Neccesity to recently reinforce the NPT (additional protocol)
- → Think together to the future evolution of the system

Reprocessing & Recycling in France

> The current situation

- EDF nuclear fleet: 58 PWRs, ~400 TWh/y
- 1100 Mt_{HM} /y spent fuel discharged, incl. 100 t_{HM} MOX
- 850 Mt_{HM} UOx spent fuel (1% Pu) reprocessed
- Pu recycled as MOX in 20 PWRs (900 MWe)
 1/3 MOX cores, 7,08 % Pu, 3-batch reload, 38 GWd/t_{HM} aver.
- 100 Mt_{HM}/y MOX fuel burned, → 30 TWh
- True HLW vitrified (fission products + minor actinides)

A principle : "Pu equal flows"

Low costs of the reprocessing option → new benefits

Short Term Evolution

> Evolution of the MOX/UO₂ management strategy

- The MOX parity project : new MOX fuel management to achieve energy & economic balance between MOX and UOx fuels
- Increased MOX Average Burn Ups: 38 to 45 GWd/t_{HM}
- Stabilization of separated Pu inventory to be achieved in ~2005
- Inventory limited to level needed to dynamically manage the whole process

Proliferation resistance and today's recycling options

- Plutonium from LWR spent fuel is not well suited to proliferating activities
- There are easier approaches than diversion of spent fuel to proliferating activities (enrichment technologies, diversion of neutron sources...)
- Recycling Plutonium without delay limits separated stocks to the minimum required for the fuel management
- Recycling Plutonium is preferable than storing directly spent fuel elements in repositories likely to eventually become "Plutonium mines"

Mid term evolution: LWRs and Pu recycling

major role of LWRs during the 21st century

Investigate the possibility of Pu multi-recycling in Generation III LWRs

R&D efforts for a balance in Generation III PWRs : Pu production = Pu consumption

- > Pu multi-recycling with New Fuel assemblies
- > 100% MOX BWR/PWR Cores

Future Nuclear Energy Systems

- Improved Economics, Safety & Reliability
- ➤ Top priority for Sustainable Development & Proliferation Resistance Goals
 - Sustainability
 - Effective fuel utilization
 - Minimize & manage nuclear waste
 - Proliferation resistance
 - Unattractive systems/Least desirable route for diversion or theft of W-Materials
 - Increased physical protection against acts of terrorism

Generation IV and Nonproliferation strategy

an unique opportunity:

- 1. To adopt a comprehensive nonproliferation strategy
- 2. To implement measures from early design stages to operation
- 3. To take benefit from the experience with safety methodology
- 4. To take advantage from new technologies
- 5. To achieve a global optimisation of the future systems
- 6. To share the approach internationally

Generation IV Concepts selection

The 'fast neutron, closed cycle' family

- √ Top-ranked in sustainability
 - Management of actinides
 - Efficient conversion of fertile uranium
- ✓ Rated good in safety, economics, in proliferation resistance & physical protection
- ✓ Gas, Na, Pb-Bi considered as different/parallel options
- ✓ Missions: electricity production & actinide management

Integrated Recycling & Proliferation Resistance

Fuel cycle options for enhanced proliferation resistance

Identify technical solutions to meet these requirements

- 1. Attractiveness
 - Increased fuel burn-up
 - Recycling without separation of Plutonium
 - Recycling with the extraction of fission products only (« dirty fuel clean waste concept »)
- 2. Accessibility, physical protection
 - Integrated cycle
 - Detection techniques and controls
 - Minimisation of transports
- 3. Safeguardability IAEA safeguards, Euratom controls

Which choices, for which development strategy?

- ➤ How can we conciliate the voluntarist GEN IV goals of developing long lasting nuclear energy for the good of humanity, with the confidence given to the states?
- What position must the states take in terms of this development strategy?
- ➤ To limit the potential risk of proliferation associated to the closed cycle, widely selected in the GEN IV concepts, we must work :
 - for the robustness of the cycle (aim of the R&D)
 - for a broad international consensus (governance) :
 - verification of the advisability of installations
 - inspection of these installations
- Some states will choose to deploy full nuclear capacities
- Others will choose to deploy reactors and to hire out the cycle services

Conclusions

- > The future reactors will be intrinsically resistant to proliferation
- > The closed cycle will not weaken resistance to proliferation
- The states will be free to choose their development strategy for reactors-cycle systems
- An international consensus must be reached and based on a system of controlling guarantees which must be the central key in the fight against proliferation